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ABSTRACT 9 

Loads in asphalt are mainly transferred through contact between the stones and the 10 

interaction between the stones and the binder. That makes asphalt suitable for investigations 11 
using the Discrete Element Method (DEM). This study focuses on prediction of compactability 12 
and damage of the aggregates. Explicitly, the influence of different aggregate gradations, mixture 13 
temperatures and binder properties are studied. In the DEM simulations, aggregate fracture is 14 

handled by a recently developed method of incorporating particle fracture in DEM, based on 15 
previously performed fracture experiments on granite specimens. The binder phase is modeled 16 

by adding a surface layer around each DEM particle. This surface layer has the same thickness as 17 

the binder. The mechanical properties for the binder at different temperatures are taken from 18 

literature. This DEM approach has been used for studying the behavior of asphalt mixtures in the 19 
compaction flow test and during gyratory compaction. The results show that the proposed DEM 20 

approach is able to provide both qualitative and quantitatively responses in both cases and also 21 
provide predictions of aggregate damage. One large benefit with the modelling approach is that 22 
different binder quantities and properties could be studied without re-calibration of model 23 

parameters. 24 
Keywords: Simulations, Discrete Element Method, Gradations, Binder properties, 25 

Mechanical Behaviour 26 

1. INTRODUCTION 27 

The Discrete Element Method (DEM) provides a promising analysis tool for studying the 28 

mechanical behavior of asphalt mixtures, e.g. [1,2]. As compared to the finite element method, 29 
DEM allows capturing explicitly the rearrangement of particles in the material as well as 30 
accounting for the effect of particle fracture. Thus, DEM is particularly advantageous for 31 
examining asphalt mixture behavior at large deformations situations, such as compaction.  32 

This study presents a newly developed DEM-based approach to study the macroscopic 33 

behavior of asphalt mixtures during compaction. In order to obtain accurate simulation results, 34 
an accurate contact law is essential, which provides the normal and shear forces on the 35 
aggregates. Based on the experimental results obtained in a previous study [3] together with 36 
results for viscoelastic contacts in the literature [4], new contact and failure laws for stones are 37 

developed and incorporated into the DEM model. Here, the basic concepts of this model are 38 
presented and discussed. The new DEM-based approach is used to model asphalt mixture 39 
behavior during a compaction flow test [2,5] and gyratory compaction. The ability of the model 40 

to capture the influence of mixture parameters on the compactability and the eventual stone 41 
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damage during compaction is examined. In particular, using a model with aggregates surrounded 1 
by a binder phase allows accounting for variations in mechanical and volumetric binder 2 
characteristics without any re-calibration of binder properties. 3 

2. SIMULATION MODEL 4 

2.1 Discrete Element Method 5 
In the Discrete Element Method (DEM), which was invented by Cundall and Strack [6], 6 

each single particle is modelled as one object and the local contact forces acting between the 7 
objects determines the behaviour of the system. Hence, accurate models for the contact forces are 8 
of critical importance, as discussed below. 9 

DEM is a time-stepping algorithm and in each time step Δ𝑡, the contact forces are 10 
calculated from the positions of the particles at the previous time step. To determine the positions 11 
at the next time step, Newton’s second law for each particle is integrated explicitly. Due to the 12 
explicit nature of the algorithm, time steps cannot be made too large in order to have a 13 
numerically stable solution. In order to have a feasible large time step, mass scaling is applied 14 

which should not affect the response under quasi-static conditions [7] and is used in our study. 15 
The DEM simulations are implemented in an in-house software written in C++. More details can 16 

be found in [8,9]. 17 

 18 

2.2 Contact Model 19 

The contact laws which provide the normal contact force F as function of the penetration 20 
h and the tangential contact force T as function of tangential displacement s, is of utmost 21 

importance for getting reliable predictions from the DEM simulations. For asphalt materials, one 22 
important issue is the large difference in forces for small and large penetrations.  23 

For small penetrations, only the binder phase surrounding the particles comes into contact 24 

and “soft” viscoelastic behaviour is seen. The thickness 𝑡𝐵𝑃 of this binder phase is assumed the 25 
same for all DEM particles. This binder phase includes both the asphalt binder and the fine stone 26 
particles that are too small to be included in the DEM simulations. When the penetration is larger 27 

than the thickness of the binder phase layer, the stones themselves start to deform and the contact 28 
gets much stiffer.  29 

A visualization of this contact model is presented in FIGURE 1 (a). When the penetration 30 

is less than 2𝑡𝑃𝐵, it is assumed that only the binder affects the contact behavior and the contact 31 
force can be calculated with a viscoelastic model using an incompressible binder material. This 32 

force is denoted 𝐹𝑏𝑖𝑛𝑑𝑒𝑟. For implementation reasons, the behavior in shear of the binder material 33 
is described by a generalized Maxwell model and the expression for the relaxation modulus reads 34 

 

 𝐺(𝑡) = 𝐺0 [1 − ∑ 𝛼𝑖(1 − exp(−𝑡/𝜏𝑖))

𝑁

𝑖=1

] (1) 

where 𝐺0, 𝛼𝑖 and 𝜏𝑖 are material parameters for the binder phase. The contact force is then 35 
calculated using an incremental form of the solution presented by Lee and Radok [4]. The 36 
implementation of this part of the contact model is left out in this paper for brevity but will be 37 

presented and analyzed in an upcoming paper. 38 
 A last important part of the binder contact model is cohesion as indicated by the fracture 39 

force 𝐹𝑚𝑖𝑛 in FIGURE 1 (b). This bonding force is calculated using JKR theory [10] by 40 
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specifying the energy for separating the contacting surfaces. A value of 0.01 J/mm2 has been 1 
used here. 2 

  
FIGURE 1: (a) Visualization of two aggregates, at presense of binder phase, in contact. (b) A 3 

sketch of the contact force as function of penetration between the particles. 4 

 5 

When the penetration has exceeded 2𝑡𝑃𝐵, the deformation of the stones themselves starts 6 

and a force 𝐹𝑠𝑡𝑜𝑛𝑒 is added to the total force. This force is calculated using elastic contact theory 7 

by Hertz [11] knowing that an elastic behavior is a good approximation for stone contact in the 8 
normal direction [3]. The total normal contact force is thus given by 9 

 

 
𝐹𝑡𝑜𝑡(ℎ) = 𝐹𝑏𝑖𝑛𝑑𝑒𝑟(ℎ) +

4

3
𝐸0√𝑅0,𝑠𝑡𝑜𝑛𝑒(ℎ − 2𝑡𝑃𝐵)3/2𝐻(ℎ − 2𝑡𝑃𝐵)  (2) 

Where 𝐸0 is the reduced Young’s modulus for the two contacting particles which for equal 10 

materials becomes 𝐸/2/(1 − 𝑣2) with 𝜈 being the Poisson’s ratio. 𝐻(ℎ − 2𝑡𝑃𝐵) is the Heaviside 11 

step function giving forces between the stones only when the penetration is larger than 2𝑡𝑃𝐵. 12 

𝑅0,𝑠𝑡𝑜𝑛𝑒 is the effective contact radius for the stone contact defined as  13 

 

 

1

𝑅0,𝑠𝑡𝑜𝑛𝑒
=

1

𝑅1,𝑠𝑡𝑜𝑛𝑒 
+

1

𝑅2,𝑠𝑡𝑜𝑛𝑒 
 (3) 

If the stone contact force, i.e. the second term in Eq. (2), exceeds a critical force 𝐹𝑚𝑎𝑥, the 14 
stone fractures and the technique for incorporating fracture of DEM particles presented in [12] is 15 

utilized. It is important to note that if the penetration is smaller than 2𝑡𝐵𝑃, the stone will not 16 
fracture as the stone itself is not subjected to contact forces. A sketch of this normal force model 17 

is presented in FIGURE 1(b) where the magnitude of the binder force has been exaggerated for 18 
visualization purposes. At stone fracture, the stone loses its stiffness depending on the other 19 

contact forces acting on the particle. More details of the stiffness reduction is found in [12].  20 

The tangential contact force as function of tangential displacement, 𝑇(𝑠), which acts 21 
between the particles and between particles and walls, is also important to consider as this force 22 
restrict the densification of the sample. However, tangential contact problems are much more 23 
difficult to analyze analytically than normal contact problems and thus more simplified models 24 

are needed. When only the binder force is active, the contact is assumed to be in a stick condition 25 
with no slip between the contact surfaces. Hence, a model based on a linear relationship between 26 

𝑇 and 𝑠 is assumed but modified to account for the viscoelastic material behavior. The tangential 27 
stiffness is calculated from the binder properties according to [13] where the stiffness is 28 

proportional to the contact area. When the penetration is larger than 2𝑡𝑃𝐵, a stick-slip frictional 29 
force is added, in the same way as for the normal force in Eq (2), assuming a coulomb friction 30 

coefficient of 𝜇 = 0.7.  31 
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3. SIMULATION RESULTS 1 

3.1 Numerical study 2 

Two different aggregate gradations denoted AC11 and SMA11 are studied. The specified 3 
particle size distributions are presented in FIGURE 2 (a). In order to simulate a reasonable low 4 

number of particles, the fine particles smaller than 2 mm are discarded in the simulations and 5 
included implicitly in the simulation by the thickness and properties of the binder phase. All 6 
aggregates are assumed to be a spherical stone surrounded by a spherical binder shell with a 7 
thickness calculated to provide the simulated binder content.  8 

 Using a particle size distribution based on the weight-percent passing a sieve is 9 

unpractical for DEM. Hence, distributions based on the number of particles passing are 10 
constructed instead. This is performed by fitting the mean values, shown in FIGURE 2 (a), to a 11 

truncated normal distribution and then calculating the number percent of passing. This 12 
distribution is shown in FIGURE 2 (b). 13 

  

FIGURE 2: (a) The particle size distributions used presented as weight percent 14 

cumulative density function. The dashed lines show the limits and the solid line the mean used 15 
for generating the particles. (b) The same distributions presented in terms of number of particles. 16 

The aggregates are assumed to be elastic with contact behavior as stated in Section 2.2. 17 

The Young’s modulus and the Poisson’s ratio are taken from the experimental results in [3] with 18 

values 𝐸 = 74 GPa and 𝜈 = 0.15. For the aggregate fracture model, each aggregate is assigned 19 

its own fracture strength 𝜎𝐹 which is Weibull distributed according to the following cumulative 20 

density function 𝐹 21 
 

 𝐹 = 1 − exp [− (
𝜎𝐹

𝜎0

)
𝑚 𝑉

𝑉𝑟𝑒𝑓
 ] (4) 

where 𝜎0 and 𝑚 are material parameters determined in [3] to be. 𝜎0 = 386.5 MPa and 𝑘 = 3.87. 22 

𝑉 is a scaling volume for the spheres in the DEM model taken to be the particle radius cubed and 23 

𝑉𝑒𝑓𝑓 is a scaling effective volume of 244 mm3. 24 

The mechanical behavior of the binder phase is defined in Eq. (1), and suitable material 25 
data is found in [14]. The material data presented therein assumes a Burgers model with the 26 

drawback that the DEM particles will have zero modulus at infinite time. This issue has been 27 

solved by multiplying the relaxation parameters 𝛼𝑖 with the amount of fine particles in the binder 28 
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phase. The used parameters for the generalized Maxwell model are presented in TABLE 1 for 1 
different temperatures. 2 

TABLE 1: Material properties for the binder for the two different investigated 3 

temperatures. The data is taken from [14] and in the simulations, 𝛼1 and 𝛼2 needs to be 4 
multiplied with the volume fraction of binder in the binder phase layer. 5 

𝑻 [°𝐂]  𝑮𝟎 [MPa] 𝜶𝟏 [-] 𝝉𝟏 [s] 𝜶𝟏[-] 𝝉𝟐 [s] 

110 17.74 0.684 0.0703 0.316 64.223 

150 6.65 0.513 0.0948 0.487 105.9 

 6 

3.2 Simulation of Particle flow Experiments 7 

The first type of experiments that is simulated is the Compaction Flow Test presented in [5]. In 8 
these experiments, a container is filled with asphalt material having a volume 9 

of 150x100x100 mm3. On one side of the container, a loading strip, with dimensions 10 

50x100 mm2 is moved downwards vertically to apply the loading. This is performed using 11 
controlled displacement with a velocity of 15 mm/min. 12 

The simulation starts by generating a random “gas” of particles with a packing density of 13 

30 %: In a second step, the packing is generated by applying a gravitational field to the particles. 14 
After the kinetic energy has decreased below a threshold value, the sample is considered in rest 15 

and the flow test begins. During the flow test, the force on the loading strip is monitored 16 

continuously together with the positions of the particles. The force divided by the area of the 17 

strip is presented in FIGURE 3 (a) as function of the displacement divided by the height of the 18 
particle bed. As expected, the simulated response is significantly weaker than the experimental 19 

results in [5] due to the much higher binder content assumed in the simulations. The noisy 20 
response in the simulations could be explained that only large aggregates are simulated. The 21 
uplift, which is defined as the increase of the mean of the 10 highest material points in the 22 

container is presented in FIGURE 3 (b). Initially, a compression of the sample is seen but 23 
eventually an uplift up to 5 mm occurs. This uplift increases with sample stiffness, i.e. with 24 

decreasing temperature and binder content, as expected. Also here, the response is a bit noisy 25 
which is due to the fact that the movement of a single particle has a large influence on the uplift, 26 
as defined here. 27 

 28 

3.3 Simulation of Gyratory Compactor Experiments 29 

The gyratory compactor simulations are initiated in the same way as for the particle flow test. 30 

After the particles have settled, a plate that is inclined with 1° is placed on the top of the 31 
particles. On that plate, a pressure of 600 kPa is applied by increasing the pressure linearly 32 

during one second. When the pressure is fully applied, the gyration starts by imposing a 33 
controlled rotation of the plate with a velocity of 0.5 revolutions per second. During gyration, the 34 
packing density is monitored continuously and is presented in the form of air void decrease in 35 
FIGURE 4 (a). A relative measure is chosen because the thick layer of binder and fine stone 36 
particle that surrounds each modelled particle becomes too compliant at high packing densities. 37 

This occurs because the hydrostatic pressure in the binder at high densities is not accounted for 38 
and therefore leads to an overestimated compressibility. The overestimated compressibility in the 39 

beginning is due to the fact that the binder material is distributed as a spherical shell around each 40 
stone and the first few gyrations have to level this layer.  41 
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The number of fractured particles is presented in FIGURE 4 (b) for different mixture 1 
temperatures, gradations and binder thicknesses. It is evident that fracture of the particles is very 2 
rare since only 0-4 out of 5000 particles fracture during the process. It is also seen that 3 
decreasing the binder temperature leads to a stiffer response and more frequent damage of the 4 

aggregates with increasing contact forces. 5 

  

FIGURE 3: (a) Force displacement relationship at the flow test for SMA gradations at 6 

150 °C.  (b) The simulated uplift during the test. 7 

  

FIGURE 4: (a) Simulated air void change per gyration for a mixture at 150 °C. (b) The 8 
number of fractured particles for all studied configurations. 9 

4. CONCLUSIONS 10 

Using a DEM model where the asphalt is modelled as stones with a surrounding binder 11 
layer is concluded to be beneficial as different binder contents and binder types can be accounted 12 
for easily without re-calibrating contact law parameters. This has been demonstrated by 13 
providing adequate predictions for two different mechanical tests on asphalt mixtures. The DEM 14 

model also provides insights that are difficult to investigate experimentally, for instance 15 
aggregate damage. However, for qualitative predictions of air voids, further investigations are 16 
needed on the smallest size of aggregates that needs to be included in the model.  17 
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