Energy-based thermo-viscoelastic damage model for asphalt concrete mixtures

Ibrahim Onifade¹, Yared Dinegdae¹, Björn Birgisson¹
¹Center for Infrastructure Renewal (CIR), TEES, Texas A&M University, College Station, TX, 77840, USA

ABSTRACT

In this paper, a three dimensional (3D) analysis framework for temperature-induced damage (thermal cracking) is presented. The analysis framework consists of an energy-based viscoelastic anisotropic damage model for the characterization of damage in asphalt mixtures and a temperature coupling model for the determination of the critical micro-crack initiation threshold (MCIT) and the material damage parameters as a function of temperature. The energy-based analysis framework is implemented in a Finite Element Analysis (FEA) program for the simulation of the Thermal stress restraint specimen test (TSRST). Superpave IDT test is performed to characterize the material viscoelastic and damage properties at -20°C, -10°C and 0°C. The result of the analysis shows the energy-based thermo-viscoelastic damage model is capable of predicting realistic damage behaviour of the asphalt mixture in the TSRST test. The energy-based model exhibits the potential of accounting for the effects of environmental changes (temperature variations) and mechanical loading on the material response in a unified thermodynamic consistent framework.

Keywords: TSRST, thermal cracking, thermo-viscoelastic damage, energy-based viscoelastic damage model, low temperature cracking

1. INTRODUCTION

Thermal cracking is one of the primary distress modes that is manifested as transverse cracks on the surface of asphalt pavements. The primary mechanism that drives the development of thermal cracking is the temperature gradient that results due to the severe variations in the climatic condition especially in low temperature climatic regions. The development of thermal cracking is mitigated at high temperature range by the increased capabilities of the mixture to relax stresses. From a micromechanical perspective, the difference in the thermomechanical properties of the asphalt binder and the aggregates together with the imposed boundary condition introduces differential internal constraint that results in tensile stress build-up. Factors that affect the thermal behaviour of asphalt concrete mixtures include binder type, aggregate type and gradation, mixture volumetric properties, thermos-volumetric properties (i.e. coefficient of thermal expansion), the temperature and the cooling rate [1]–[3].

The current specifications for the selection of mixture for thermal cracking resistance asphalt mixtures include a set of experimental tests and limits to check the capabilities of asphalt binder and asphalt mixtures to resist thermal cracking. The experimental setup includes the Bending Beam Rheometer (BBR) and Direct Tension (DT) test for the binder, while the Thermal stress restraint specimen test (TSRST) and the Superpave IDT creep and strength tests are used for asphalt concrete mixture evaluation. The PG grading of asphalt binders is used in characterizing and selecting mixtures for low temperature cracking pavement applications. The national-pooled
fund study identified the fracture energy \(G_f \) from the Semi-Circular Bend (SCB) Test and the binder failure strain as performance indicators for thermal cracking in asphalt concrete mixtures [4], [5].

Different models have been proposed for the characterization of the thermal cracking behaviour of asphalt mixtures under thermal cyclic loading and constant thermal cool rate conditions. Phenomenological models similar to the traditional fatigue analysis approach using the Miner’s rule have been used for predicting the number of thermal cycles to failure. The energy release rate \(J_{IC} \) and the \(C^* \) line integral have been used as parameters to evaluate the low temperature cracking potential of asphalt concrete mixtures. Lytton et. al [7] proposed models based on fracture mechanics to predict the number of temperature cycles to thermal fracture. The SHRP research project presented a comprehensive framework (TC-model) that captures the mechanisms governing the thermal cracking in asphalt pavements. The IlliTc-model was developed as part of the National pooled fund study on low temperature cracking [8]. The IlliTc-model relies on the 2D-FEM and a bi-linear cohesive zone modelling technique to account for the initiation and propagation of cracks due to thermal stress build-up. Other models that have been used to characterize the thermal cracking in asphalt mixtures include [9]–[14]. Most of these models are based on 1D and 2D-analysis framework without consideration for the dependency of the material damage parameters on temperature, the anisotropic damage behaviour of Asphalt concrete, the three-dimensional stress distribution, and its effect on the material damage behaviour.

This paper presents and explores the potentials of a unified cracking model that can be used to account for the coupled effects of thermal and mechanical loading conditions on asphalt concrete response in a 3D-analysis framework. The energy-based damage model for viscoelastic asphalt mixtures developed by [15]–[18] has been used to characterize and model the behaviour of AC mixtures due to cracking under mechanical loading conditions. The model is incorporated with a temperature coupling model that accounts for the changes in the material damage parameters due to changes in the temperature. The energy based thermo-viscoelastic damage model is used to predict the material damage behaviour during the TSRST test.

2. THERMO-MECHANICAL CONSTITUTIVE RELATIONSHIP

The thermo-elastic boundary value problem considering infinitesimal deformation derived within a thermodynamic framework is presented in [19]. The resulting equations are presented as follows:

- Conservation of linear momentum (neglecting inertia term)
 \[\sigma_{j,i} + \rho f_i = 0 \]

- Strain-displacement relationship
 \[\varepsilon_{ij} = \frac{1}{2} \left(u_{ij} + u_{ji} \right) \]

- Constitutive equation (neglecting residual stress)
 \[\sigma_{ij} = D_{ijkl} (\varepsilon_{kl} - \varepsilon_{kl}^0) + \sum_{\substack{j=1}}^n D_{ijkl} (\varepsilon_{kl} - \varepsilon_{kl}^0 - \varepsilon_{kl}^{\nu,j}) \]

- Conservation of energy (heat conduction equation)
 \[\rho C_v \dot{T} - \left(k_{ij} T_{ij} \right)_j - \rho \dot{\varepsilon} = 0 \]
where, σ_{ij} is the stress tensor, ρ is the mass density, f_i is the body force per unit mass, ε_{ij} is the total strain tensor, u_i is the deformation field, D_{ijkl} is the elastic modulus tensor, D^i_{ijkl} is the elastic modulus of the i^{th} leg of the prony series, ε_{ij}^{th} is the thermal strain tensor, $\varepsilon_{ijkl}^{visc}$ is the viscous strain tensor of the i^{th} leg of the prony series, β_{kl} is the thermal expansion tensor, T is the temperature field, T_o is the strain reference temperature, C_v is the specific heat at constant volume, k_{ij} is the thermal conductivity tensor, and r is the heat supply per unit mass.

8. 3. ENERGY-BASED VISCOELASTIC DAMAGE MODEL

Onifade et al. [15]–[17] proposed a viscoelastic anisotropic damage model based on energy balance with potentials for the identification of the critical threshold for micro-crack initiation and its consequent evolution based on thermodynamics of irreversible processes and Continuum Damage Mechanics. A non-associative damage formulation is used to derive different criteria for damage initiation and evolution. The initiation and evolution of damage is considered only on the positive part of damage conjugate Y^+. The micro-crack initiation criterion in one principal damage direction is expressed as follows:

$$f^d = \varphi^*_I(Y^+) - \varphi^*_{I,c}(S_o,k_2) - R(r) = 0$$

Where:

$$\varphi^*_I(Y^+) : \text{is the micro-crack initiation potential}$$

$$\varphi^*_{I,c}(S_o,k_2) : \text{is the critical micro-crack initiation threshold}$$

Y^+: is a measure of the strain energy density

S_o: is an energy term obtained from a strength test

R: is the damage softening term

The micro-crack initiation potential $\varphi^*_I(Y^+)$ is driven by thermodynamic conjugate of the damage variable (Y^+) and expressed as:

$$\varphi^*_I(Y^+_o) = \frac{S_o}{k_2 + 1} \frac{\sqrt{Y^+_o : Y^+_o}}{2 \cdot S_o \cdot (1 - D^o)}$$

The critical micro-crack initiation threshold $\varphi^*_{I,c}(S_o,k_2)$ is expressed as:

$$\varphi^*_{I,c}(S_o,k_2) = \frac{S_o}{k_2 + 1}$$

The micro-crack propagation criterion F_D in each principal damage direction is used to derive the evolution of damage and expressed as:

$$F_D = \alpha \cdot \varphi^*_I(Y^+_o) - \alpha \cdot \varphi^*_{I,c}(S_o,k_2) - R(r) = 0$$

where, α is k_i / k_2. The evolution of micro-crack is obtained with respect to the dissipative micro-crack potential F_D by taking the derivative of the dissipation potential. The resulting power-law type damage evolution law is given as:
\[
\dot{D}_{ij} = \frac{k_1}{k_2} \left(\sqrt{Y_{ij}^+ : Y_{ij}^+} \cdot \left(I - D_{ij} \right)^{-1} \right)^{k_2} \cdot \frac{Y_{ij}^+}{\sqrt{Y_{ij}^+ : Y_{ij}^+}} \cdot \hat{t}_{ij}
\]

where, \(k_1, k_2\) and \(S_0\) are material parameters that need to be determined to together with the linear viscoelastic material properties to model the material damage behavior. Details of the damage model can be found in [16], [17].

Temperature coupling

Temperature coupling parameters \(G(T)\), \(H(T)\) and \(B(T)\) are introduced to obtain the critical micro-cracking damage initiation threshold \(\phi_{1,c}^*\), and the damage parameters \(k_1\) and \(k_2\) at other temperatures respectively using the master creep compliance shift factor \((a_T)\).

\[
\phi_{1,c}^*(T) = \phi_{1,c,ref}^* \cdot G(T), \quad G(T) = \exp\left(-\theta_1^* \log(a_T)\right)
\]

\[
k_1(T) = k_{1,ref} \cdot H(T), \quad H(T) = \exp(\theta_2 \cdot \log(a_T))
\]

\[
k_2(T) = k_{2,ref} \cdot B(T), \quad B(T) = \exp\left[-\theta_3 \cdot \left(1 - \frac{T}{T_{ref}}\right)\right]
\]

Macro-crack formation

The Fracture Energy (FE) obtained by means of differential strain gauge observation in the Superpave IDT strength test has been used as the energy limit for macro-crack initiation. A power-law relationship exists between the damage parameter \(k_1\) and the Fracture Energy (FE):

\[
FE = A \cdot k_1^{-n},
\]

where, \(A\) and \(n\) are material constants. The relationship in Eq. (14) presents the possibility of predicting the Fracture Energy (FE) over a wide temperature range.

4. MATERIAL AND TESTING

In this paper, the Superpave IDT test is used to characterize the performance of the asphalt concrete mixture. The asphalt mixture was fabricated using unmodified 70/100 penetration grade binder and a dense graded crushed granite aggregate with maximum aggregate size of 11 mm. The Superpave IDT resilient modulus and creep compliance tests are used to obtain the linear viscoelastic properties while the Superpave IDT strength test is used to obtain the strength and material damage parameters of the asphalt mixture. The procedure used for the interpretation of the Superpave IDT strength test for the identification of the material damage parameters is presented in [17]. Table 1 shows a summary of the Superpave IDT test results as well as the material damage parameters where \(M_r\) is the resilient modulus, \(D_1\) and \(m\) are creep compliance parameters (100s creep test), \(\mu\) is the Poisson’s ratio, \(FE\) is the Fracture Energy, \(k_1, k_2\) and \(S_0\) are material damage parameters and \(\phi_{1,c}^*\) is the critical micro-crack initiation threshold (MCIT). The Poisson’s ratio is modelled as a temperature dependent material property using a first order polynomial function. Table 2 shows the temperature coupling, WLF shift factor and FE model parameters.
TABLE 1: Summary of Superpave IDT creep and strength test results

<table>
<thead>
<tr>
<th>Temp</th>
<th>M_r (GPa)</th>
<th>D_1/(GPa)</th>
<th>m</th>
<th>μ</th>
<th>FE (kJ/m³)</th>
<th>k_1</th>
<th>k_2</th>
<th>S_0 (kJ/m³)</th>
<th>φ_{1,c}^* (kJ/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-20</td>
<td>20.96</td>
<td>0.0621</td>
<td>0.3951</td>
<td>0.2022</td>
<td>0.52</td>
<td>2.535</td>
<td>1.57</td>
<td>0.177</td>
<td>0.0689</td>
</tr>
<tr>
<td>-10</td>
<td>16.7</td>
<td>0.075</td>
<td>0.6156</td>
<td>0.2249</td>
<td>0.97</td>
<td>116.2</td>
<td>0.95</td>
<td>0.169</td>
<td>0.0864</td>
</tr>
<tr>
<td>0</td>
<td>10.88</td>
<td>0.8947</td>
<td>0.6254</td>
<td>0.2894</td>
<td>3.47</td>
<td>24.6</td>
<td>0.52</td>
<td>0.264</td>
<td>0.174</td>
</tr>
</tbody>
</table>

TABLE 2: Temperature coupling, WLF shift factor and FE model parameters.

<table>
<thead>
<tr>
<th>Temperature coupling</th>
<th>WLF shift factor</th>
<th>FE model</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ_1</td>
<td>θ_2</td>
<td>θ_3</td>
</tr>
<tr>
<td>0.3699</td>
<td>0.7559</td>
<td>1.0621</td>
</tr>
</tbody>
</table>

5. TSRST SIMULATION

The energy-based damage model and the temperature coupling model is implemented in COMSOL Multiphysics ® for the three-dimensional (3D) Finite Element simulation of the TSRST. The test simulation is carried out on a cylindrical specimen (250mm long) with a thin central section (50mm diameter) to ensure uniform stress and strain distributions in the central specimen section and a diameter of 95mm at the base. Figure 1 shows the test geometry and boundary conditions used in the simulation. The material is cooled from 2°C at a rate of 10°C/hr. The specific heat capacity, thermal diffusivity and coefficient of thermal expansion are 1000 [J/kgK], 1.86 [W/mK] and 2e-5 [1/K] respectively.

![Finite element mesh and boundary conditions of the simulated TSRST test. (a) FE mesh, (b) prescribed temperature cooling condition, (c) Fixed domain constraint condition](image)

6. RESULTS AND DISCUSSION

The result of the FEM simulation of the TSRST test is shown in Figures 2 and 3. Figure 2 shows the contour plot of the strain, stress and damage density distribution at 32°C. It can be seen from Figure 2c that the energy-based thermo-viscoelastic damage model is capable of predicting realistic crack bands and damage patterns of the 3D test specimen. It can be seen from Figure 3a that the incorporation of the temperature coupling model enables the prediction of the damage parameter (e.g. k_1) and the critical threshold for micro-crack initiation (φ_{1,c}^*) with reasonable accuracy over a wide range of temperature. Figure 3b shows the evolution of the maximum value of the damage variable in the 3D specimen. It can be seen from Figure 3b that micro-crack
initiation occurs at -11°C, further cooling didn’t result in substantial accumulation of damage due to the stress relaxation potentials of the material. It can however be seen that the internal resistance to damage accumulation diminishes with further cooling and a rapid accumulation of damage occurs as the material reaches -26.7°C. The experimentally observed fracture temperature in the TSRST test is -25.7°C with a standard deviation of 0.62 [20].

FIGURE 2: TSRST simulation results at 32°C (a) Strain distribution in z-direction, (b) Stress distribution in z-direction, (c) Damage variable in z-direction.

FIGURE 3: (a) Evolution of material damage parameter (k_1) and critical micro-crack initiation threshold (D_c), (b) Evolution of maximum damage density in 3D test geometry.

7. CONCLUSION

In this paper, a three-dimensional analysis framework for the evaluation of the thermally induced cracking is presented. The framework is developed by incorporating temperature coupling model in an energy-based anisotropic damage model to account for the effect of temperature variation on the critical threshold for damage initiation, damage parameters and the material damage behaviour. The result of the analysis in this paper shows that the energy-based model is capable of predicting realistic damage behaviour of the asphalt mixture in the TSRST test. The energy-based thermo-viscoelastic damage model presents the potential and the capabilities of capturing the coupled effects of thermal and mechanical loading conditions on asphalt concrete response in a unified thermodynamic consistent framework.
8. REFERENCES

